Studies of the synthesis of 1,2-cis-(cyclic carbamates) of α -D-aldopyranosylamines *

József Kovács ^a, István Pintér ^a, Gábor Tóth ^b, Zoltán Györgydeák ^c and Peter Köll ^d

(Received April 7th, 1992; accepted June 2nd, 1992)

ABSTRACT

Reaction of α -D-glucopyranosyl azide with triphenylphosphine and carbon dioxide gave 1-N,2-O-carbonyl- α -D-glucopyranosylamine (7) and its α -D-furanose analogue (1), and 1-N,3-O-carbonyl- α -D-allofuranosylamine (15) and its α -D-pyranose analogue (17). Similarly, α -D-xylopyranosyl azide gave 1-N,2-O-carbonyl- α -D-xylopyranosylamine (9) and its α -D-furanose analogue (3), and 1-N,3-O-carbonyl- α -D-ribopyranosylamine (19) and its β -D-xylopyranose analogue (21). The structures of the products and their acetylated derivatives were established by ¹H and ¹³C NMR spectroscopy. 1-N,3-O-Carbonyl- β -D-xylopyranosylamine (21) was obtained from β -D-xylopyranosyl azide when spontaneous rearrangement of the 1,2-(cyclic carbamate) 5 into 21 occurred in water.

INTRODUCTION

Cyclic carbamates (N,O-carbonyl derivatives) of amino sugars have attracted interest as potential components of aminoglycoside antibiotics^{1,2}. They allow simultaneous protection of hydroxyl and amino groups of carbohydrates and aminocyclitols³⁻⁵, and they are model compounds for studying conformational problems of carbohydrates⁶.

^a Central Research Institute for Chemistry, Hungarian Academy of Sciences, P.O.B. 17, H-1525 Budapest (Hungary)

^b Technical Analytical Research Group, Technical University Budapest, Szt. Gellért tér 4, H-1111 Budapest (Hungary)

^c Institute for Organic Chemistry, Lajos Kossuth University, P.O.B. 20, H-4010 Debrecen (Hungary)

^d Department of Chemistry, Organic Chemistry Laboratory, University of Oldenburg, P.O.B. 2503, D-W 2900 Oldenburg (Germany)

Correspondence to: Dr. I. Pintér, Central Research Institute for Chemistry, Hungarian Academy of Sciences, P.O.B. 17, H-1525 Budapest, Hungary; or to: Professor Dr. P. Köll, Department of Chemistry, Organic Chemistry Laboratory, University of Oldenburg, P.O.B. 2503, D-W 2900 Oldenburg, Germany.

* Dedicated to Professor András Messmer on the occasion of his 70th birthday.

$$R^{2} = CH_{2}OH, R^{2} = H \qquad 4 \quad R^{1} = CH_{2}OH, R^{2} = H \qquad 7 \quad R^{1} = CH_{2}OH, R^{2} = H$$

$$2 \quad R^{1} = CH_{2}OAC, R^{2} = AC \qquad 5 \quad R^{1} = R^{2} = H \qquad 8 \quad R^{1} = CH_{2}OAC, R^{2} = AC$$

$$3 \quad R^{1} = R^{2} = H \qquad 6 \quad R^{1} = H, R^{2} = AC \qquad 9 \quad R^{1} = R^{2} = H$$

$$10 \quad R^{1} = H, R^{2} = AC$$

Of the possible 1,2-(cyclic carbamates) (1, 4 and 7) of p-glucosylamine, the furanoid compound 1 has long been known⁷, but its structure was proved⁸ only recently. The pyranoid 1,2-trans-(cyclic carbamate) 4 was isolated⁹ after hydrolysis of the N-nitrosourea derivative and synthesised¹⁰ from the corresponding phosphinimine. The pyranoid 1,2-cis-(cyclic carbamate) structure 7 was suggested¹¹ for the compound formed in the reaction of β -p-glucopyranosylamine and phosgene, but the product proved¹⁰ to be 4. The product from the acid-catalysed reaction of p-glucose and urea was also described¹² as 7, but was shown^{8,13} to be 1.

We now report the preparation of 7 and provide evidence for its structure.

RESULTS AND DISCUSSION

Cyclic carbamates of amino sugars are easily accessible by a one-pot procedure via phosphinimines, as described¹⁰ for 4, by reacting β -D-glucopyranosyl azide (11) with triphenylphosphine and carbon dioxide. Application of this method to the α anomer¹⁴ 12 in dry N,N-dimethylformamide at room temperature gave a mixture of four cyclic carbamates and D-glucose. The mixture was partially fractionated by column chromatography followed by HPLC. The main fraction contained three cyclic carbamates in the ratios 75:20:5 as shown by the ¹H and ¹³C NMR spectra.

11
$$R^1 = CH_2OH, R^2 = N_3, R^3 = H$$

12 $R^1 = CH_2OH, R^2 = H, R^3 = N_3$
13 $R^1 = R^3 = H, R^2 = N_3$
14 $R^1 = R^2 = H, R^3 = N_3$

$$H_2OH, R^2=N_3, R^3=H$$
 $H_2OH, R^2=H, R^3=N_3$

15 R = H

16 R = Ac

ROCH.

The minor component was α -D-glucofuranosylamine 1,2-(cyclic carbamate) (1) identified by comparison with the authentic compound⁸. The major component, which was obtained crystalline, was the expected 1-N,2-O-carbonyl- α -p-glucopyranosylamine (7). The structures of 7 and its N-acetyl-tri-O-acetyl derivative (8) were proved by their ¹H and ¹³C NMR spectra (Tables I-IV). The signals for C-4 and C-5 were distinguished by semiselective INEPT measurements¹⁵. In accord with the oxazolidin-2-one structure of 7, the chemical shift for the C=O resonance was found at δ 160.2 (Table II) and the IR spectrum contained a strong peak at 1745 cm⁻¹.

The ${}^{3}J_{HH}$ values indicated a distorted pyranoid ring in 7, as a consequence of the contribution of the ${}^{1}C_{4}$ conformation. The corresponding data for the tetraacetyl derivative 8 (Table III) revealed a ${}^{\circ}S_{2}$ skew conformation (8a). The longrange coupling $(J_{2,4} 1.1 \text{ Hz})$ also indicated a planar arrangement of H-2 and H-4 as in the °S₂ conformation. This stereochemistry of 8 was corroborated by the good agreement of the NMR data with those for the 2-N,1-O-carbonyl analogue16 and α -D-glucopyrano[2,1-d]oxazolidine derivatives¹⁷.

The third component in the mixture, which was not isolated, was probably 1-N,3-O-carbonyl- α -D-allofuranosylamine (15). Thus, a six-membered 1,3-(cyclic carbamate) structure was proved by the 13 C signal for C=O at δ 154.9 (Table II) that showed an upfield shift of ~ 5 ppm compared with the carbonyl signal of the oxazolidinone ring. The allofuranose structure was indicated by the resonance of C-4 at rather low field (δ 82.2), the small value of $J_{1,2}$ (0.6 Hz) and the long-range couplings $(J_{1.3} - 1.4, J_{2.4} \ 0.5 \text{ Hz}; \text{ Table I})$, the small downfield shift (0.15 ppm) of the H-4 resonance, and the large shift (~1.3 ppm) of the H-5 resonance on the conversion of 15 into the tetra-acetyl derivative 16 (Tables I and III).

The ¹H NMR spectrum of the fourth product, eluted second during HPLC, indicated the structure 1-N,3-O-carbonyl- α -D-allopyranosylamine (17). A significant long-range coupling $(J_{1,3} - 2.2 \text{ Hz})$ and a trans-diaxial coupling $(J_{4,5} 10.2 \text{ Hz})$,

TABLE I ¹H NMR data ^a for the cyclic carbamates

Compound	Chemie	cal shifts	(δ)					
	H-1	H-2	H-3	H-4	H-5a	H-5b	H-6a	H-6b
1 b	5.876	5.035	4.466	3.957	3.942		3.800	3.648
4 ^c	4.895	3.810	3.939	3.417	3.582		3.822	3.682
5 ^d	4.80	3.81	3.87	3.66	3.39	4.06		
7 ^b	5.681	4.736	4.069	3.63-3.65			3.826	3.728
9 ^c	5.55	4.67	4.18	3.70	3.77	3.84		
15 ^b	4.986	4.719	4.843	4.349		- 3.85-3.90 -		3.717
17 ^d	4.89	3.88	4.67	3.71	3.43		3.65	3.73
18 ^c	4.899	3.905	4.689	3.933	3.278	3.801		
21 ^d	4.90	4.09	4.49	3.90	3.98	3.81		

	Cour	ling cons	tants (Ha	z)							
	$\overline{J_{1,2}}$	J _{1,3}	J _{2,3}	$J_{2,4}$	J _{3,4}	$J_{4,5a}$	J _{4,5b}	J _{5a,5b}	J _{5,6a}	$J_{5,6b}$	J _{6a,6b}
1 b	5.4	-0.5	0.6		2.4	9.0			2.5	5.6	-12.2
4 c	8.8		10.8		7.7	9.7			2.1	5.5	-12.4
5 d,e	8.9		10.9	1.5	7.8	10.4	6.3	-11.8			
7 ^b	6.5		4.7		4.7				2.2	3.4	-12.4
9 c	5.5		5.3		5.3	5.3	5.3	-12.3			
15 ^b	0.6	-1.4	1.9	0.5	2.9	9.4			2.9	3.2	-12.4
17 d	3.5	-2.2	1.7		2.4	10.2			4.7	2.4	-12.2
19 ^c	3.2	-1.8	2.4	1.2	2.5	10.8	6.5	-12.0			
21 d,f	2.2	-2.2	4.0	1.3	3.7	2.5	1.0	-14.0			

For solutions in D₂O. ^b Recorded at 600 MHz. ^c Recorded at 300 MHz. ^d Recorded at 400 MHz. ^e $J_{1,5eq} = J_{3,5ax} = 1.5$ Hz. ^f $J_{1,5eq} = 1$ Hz.

TABLE II ¹³C NMR data for the cyclic carbamates

Compound	Chemic	al shifts (δ)					
	C-1	C-2	C-3	C-4	C-5	C-6	NCOO
4 a	85.3	81.8	73.0	71.5	80.8	60.7	160.3
5 a	86.3	82.0	73.1	71.1	69.4		160.3
5 ^b	85.8	81.8	73.1	71.3	69.4		157.7
7 a	79.6	78.2	71.2	68.0	73.7	61.7	160.2
9 a	80.4	78.6	69.6	67.0	64.0		160.5
15 ^c	83.5	70.6	79.6	82.2	70.0	63.4	154.9
17 °	77.2	60.5	80.7	66.0	69.8	60.1	155.1
19 a	76.6	60.4	80.3	65.9	58.3		155.3
21 ^a	76.5	61.9	71.1	66.2	61.7		155.2
21 ^b	76.5	62.5	70.2	66.5	61.2		151.2

^a Recorded at 75.5 MHz for a solution in D_2O . ^b Recorded at 75.5 MHz for a solution in $(CD_3)_2SO$. ^c Recorded at 100 MHz for a solution in D_2O .

$$R^{1}O$$
 $R^{1}O$
 $R^{2}O$
 R^{2

18
$$R^1 = CH_2OAC$$
, $R^2 = AC$
19 $R^1 = R^2 = H$
20 $R^1 = H$, $R^2 = AC$

as well as the small values of $J_{2,3}$ (1.7 Hz) and $J_{3,4}$ (2.4 Hz), indicated the allopyranose structure that was supported by NOE experiments which showed the proximity of H-2 to H-1 and H-3, and an *eq*, *ax*, *eq* sequence. The six-membered 1,3-(cyclic carbamate) structure was corroborated by the ¹³C resonance of C=O at δ 155.1.

Treatment of 17 with hot acetic anhydride-sodium acetate gave the tetra-acetyl derivative 18 (4 s, NAc and 3 OAc; Table III). The ¹H NMR data of 18 accorded with those of the closely related hexa-acetylguanidine derivative ¹⁸.

Treatment of α -D-xylopyranosyl azide¹⁹ (14) with triphenylphosphine and carbon dioxide in dry acetone gave a mixture of four cyclic carbamates, which the spectroscopic data indicated to contain 1-N,2-O-carbonyl- α -D-xylopyranosylamine (9), 1-N,3-O-carbonyl- α -D-ribopyranosylamine (19), 1-N,3-O-carbonyl- β -D-xylopyranosylamine⁹ (21), and 1-N,2-O-carbonyl- α -D-xylofuranosylamine^{8,20} (3). Compounds 9 and 19 were isolated by fractional crystallisation, and 21 by HPLC. The minor product (3) was identified by comparison of the ¹³C NMR data with those of the authentic compound⁸.

The ¹H and ¹³C chemical shift data for the main product (9) showed a close relation to those of the D-glucopyranose derivative 7 (Tables I and II). The medium ${}^3J_{\rm H,H}$ values ($J_{1,2}$ 5.5, $J_{2,3} = J_{3,4} = J_{4,5a} = J_{4,5b} = 5.3$ Hz) of a solution of 9 in D₂O suggested an equilibrium of the 4C_1 and 1C_4 conformations. However, for the triacetate 10, the ${}^3J_{\rm H,H}$ values (Table III) correspond well with the 1C_4 conformation (10a) not unusual for D-xylo compounds²¹.

The p-ribose derivative 19 had a structure analogous to that of the allopyranose derivative 17, as shown by their ¹H and ¹³C NMR data (Tables I and II) and those of the respective acetylated derivatives 20 and 18 (Tables III and IV). The structure of 19 was proved by X-ray diffraction²².

The ¹H NMR spectrum of 21 afforded vicinal and long-range couplings which agreed well with the ${}^{1}C_{4}$ conformation of the xylopyranoid ring. NOE experiments showed that the intensity of the signal for H-2 (δ 4.09) was increased by irradiation

TABLE III 1 H NMR data a for the acctylated derivatives of cyclic carbamates

Compound	Chemica	Chemical shifts (8)									
	H-1	H-2	H-3	H-4	H-5a	H-5b	H-6a	Н-69	NAc	OAc	İ
9 9	5.08	4.00	5.44	5.10	3.65	4.34			2.53	2.12, 2.0	
ر حد	6.161	4.629	5.282	4.981	3.810		4.160	4.234	2.575	2.150, 2.	112, 2.064
10°	5.921	4.851	5.329	4.375	3.791	4.029			2.520	2.155, 2.	119
16 °	6.384	5.304	4.851	4.500	5.207		4.663	4.135	2.581	2.183, 2.	092, 2.072
18 _b	6.21	5.19	4.99	5.00	3.82		4.19	4.30	2.70	2.14, 2.1	3, 2.03
20 c	6.140	5.108	4.963	5.050	3.447	4.000			2.68	2.09(2)	
22 ^d	60.9	4.85	4.84	4.96	3.92	3.96			5.66	2.20, 2.1.	2.20, 2.13
	Coupling	Coupling constants (Hz)									
	$J_{1,2}$	$J_{1,3}$	$J_{2,3}$	J _{2,4}	J _{3,4}	J _{4,5a}	J _{4,5b}	J _{5a,5b}	$J_{5,6a}$	J _{5,6b}	J _{6a,6b}
<i>q</i> 9	9.1		11.0		8.0	6.6	6.3	-12.0	 		
ر م	6.5		3.1	1.1	2.2	8.6			3.4	0.9	-12.2
, 01	8.4		2.4	8.0	2.4	4.3	3.9	-13.2			
, 91	0∼	-1.3	1.8		2.3	8.6			3.0	4.3	-12.5
18 b	4.0	-2.1	1.7			10.7			2.8	3.7	-12.5
20 ^c	3.8	-2.1	1.6		2.1	10.8	6.4	-12.0			
22 ^d						2.4	1.0	-14.7			

^a For solutions in CDCl₃. ^b Recorded at 250 MHz. ^c Recorded at 300 MHz. ^d Recorded at 400 MHz.

TABLE IV

 $^{13}\mathrm{C}\ \mathrm{NMR}$ data a for the acetylated derivatives of cyclic carbamates

Compound	Chemica	Chemical shifts (8)						
	2	22	63	24	5.5	95	NC00	Others
9 9	85.5	76.6	71.0	69.5	67.1		151.5	171.2 (CON), 169.6(2) (COO)
								24.2 (MeCON), 20.6(2) (MeCOO)
ر حور	78.7	70.7	68.0	67.3	68.1	63.0	151.9	170.3 (CON), 169.4, 169.0, 168.8 (COO)
								23.6 (MeCON), 20.6, 20.5(2) (MeCOO)
10 q	78.3	71.0	65.8	65.6 *	61.4		151.9	169.8 (CON), 169.2, 168.5 (COO)
								23.5 (MeCON), 20.7, 20.6 (MeCOO)
16 d	81.1	72.2	77.2	80.2	68.1	61.9	148.0	170.6 (CON), 170.3, 169.0, 168.8 (COO)
								26.0 (MeCON), 20.6(3) (MeCOO)
4 81	75.0	62.2	75.3	6.99	66.4	61.1	148.8	172.2 (CON), 170.4, 169.4, 168.9 (COO)
								27.1 (MeCON), 20.6(2), 20.5 (MeCOO)
20 d	74.6 °	62.6	75.4 °	67.0	57.2		148.8	172.3 (CON), 169.4(2), (COO)
								27.1 (MeCON), 20.6(2), (MeCOO)
22 °	74.2	62.7	0.89	66.1	59.2		148.5	171.5 (CON), 169.6, 169.4 (COO)
								26.7 (MeCON), 20.8, 20.6 (MeCOO)
a For solutions	in CDCl _{3.} b	Recorded a	t 62.5 MHz.	Recorded at	100 MHz. ^d	Recorded a	at 75.5 MHz. e	For solutions in CDCl ₃ , ^b Recorded at 62.5 MHz. ^c Recorded at 100 MHz. ^d Recorded at 75.5 MHz. ^e Assignments may have to be reversed.

of H-1 (δ 4.90). Similarly, the proximity of H-3 (δ 4.49) to H-2 (δ 4.09) and H-4 (δ 3.90) was established. The ¹H NMR data for **21** accord with those reported⁹, except that the signals of H-2 and H-3 were assigned incorrectly; the chemical shift of the H-2 resonance (δ 4.09) is smaller than that of H-3 (δ 4.49) as a consequence of the 1,3-(cyclic carbamate) structure.

The formation of 21, as a stable β -D-xylopyranosyl derivative, from the α -azide 14 must involve anomerisation. Indeed, in the reaction of β -D-xylopyranosyl azide (13) with triphenylphosphine and carbon dioxide in dry acetone, 20% of 21 was obtained in addition to the 1,2-trans-(cyclic carbamate) 5. The 13 C C=O signal was found at δ 155.2 for 21 but at δ 160.3 for 5, in accord with the six- and five-membered cyclic carbamate structures, respectively. The large $^3J_{\rm H,H}$ values revealed a 4C_1 conformation for 5 in contrast to the 1C_4 conformation for 21.

Conventional acetylation of 5 and 21 afforded the known triacetyl derivatives 6 and 22, respectively. Compound 6 was obtained earlier 6 as the sole product of the same reaction sequence. An unambiguous assignment of the ¹³C NMR spectrum of the triacetyl compound ^{9,23} 22 was achieved by 1D semi-selective INEPT ¹⁵.

The 1,2-(cyclic carbamate) 5 was unstable in water and rearranged into the thermodynamically more stable²³ 1,3-(cyclic carbamate) 21. Consequently, only 21 was obtained by the same transformation of 13 when the product was extracted with water.

The rearrangement $5 \rightarrow 21$ can be explained by the opening and recyclisation of the cyclic carbamate system accompanied by inversion of the pyranoid ring. A similar transformation with a conformational change of the cyclitol ring occurs for fortimicin derivatives⁵.

The formation of several cyclic carbamates in the reaction of α -D-glycopyranosyl azides with triphenylphosphine and carbon dioxide suggests that the zwitterionic oxycarbonylaminophosphonium intermediate (24), generated from the phosphinimine 23 and carbon dioxide, may give the products without formation of the isocyanate as was assumed earlier¹⁰.

HO HO HO HO HO HO HO HO PPh₃

$$R = CH_2OH, H$$

Recorded to the physical Recorded to the physi

Thus, 24 can afford the 1,2-(cyclic carbamate) by the participation of HO-2 or the 1,3-(cyclic carbamate) by an intramolecular nucleophilic attack at C-3. The mechanism of the formation and transcarbamoylation of cyclic carbamates of amino sugars is being investigated further.

EXPERIMENTAL

General.—TLC was performed on Silica Gel F_{254} (Merck) with A, EtOAc-EtOH-water (7:2:1); B, EtOAc-EtOH-water (8:2:1); C, CHCl₃-acetone (9:1); D, EtOAc-MeOH (8:1); and E, CHCl₃-acetone (95:5); and detection by charring with H_2SO_4 . Silica gel (40–63 μ m) was used for column chromatography and dry-column flash chromatography ²⁴. HPLC was carried out on a Waters Deltaprep 3000 apparatus, using a column (15 × 250 mm) of silica gel (10–15 μ m). Melting points are uncorrected. Optical rotations were measured with a Zeiss Polamat A polarimeter and IR spectra with a Nicolet 205FT spectrometer. Bruker AMX-600, AM-400, AM-300, and AC-250 spectrometers were used to obtain ¹H (solutions in D_2O , internal HOD; solutions in CDCl₃, internal Me₄Si) and ¹³C NMR spectra (solutions in D_2O , internal acetone; solutions in CDCl₃ and (CD₃)₂SO, internal Me₄Si). The assignments of most ¹H and ¹³C resonances were proved by spin-decoupling and by 2D ¹³C-¹H correlation maps, obtained with the Bruker software package. CI (isobutane)-mass spectra were obtained with a Finnegan-MAT 212 instrument and an SS 200 data system.

Acetylation of cyclic carbamates.—The N-acetyl-di- and -tri-O-acetyl derivatives were prepared as follows, except where noted otherwise. A mixture of the cyclic carbamate (1 mmol) and anhyd NaOAc (0.5 g, 6 mmol) in acetic anhydride (5 mL) was boiled under reflux for 2 h, then poured into ice-water (50 mL), and extracted with CHCl₃. The extract was dried and concentrated, a solution of the residue in EtOH was clarified with charcoal, then concentrated, and toluene was evaporated from the residue.

Reaction of α -D-glucopyranosyl azide (12) with triphenylphosphine and carbon dioxide.—To a solution of 12^{14b} (0.82 g, 4 mmol) in dry N, N-dimethylformamide (14 mL) saturated with CO_2 was added a solution of triphenylphosphine (1.31 g, 5 mmol) in N, N-dimethylformamide (15 mL) at room temperature during 20 min, and the flow of CO_2 was continued for 12 h. TLC (solvent A) then revealed no 12 but several products (R_f 0.4–0.5, 0.3, and 0.15), triphenylphosphine oxide (R_f 0.8), and triphenylphosphine (R_f 0.9). The solution was concentrated and the residue was extracted with CHCl₃ (15 mL) to dissolve the phosphorus containing by-products (1.33 g). Column chromatography (solvent A) of the residue (0.74 g) then HPLC (solvent B) gave fractions I-III.

Fraction I (191 mg), T 20.5 min (solvent B), R_f 0.4–0.5 (solvent A) was a mixture of 1-N,2-O-carbonyl- α -D-glucopyranosylamine (7, 17%), 1-N,3-O-carbonyl- α -D-allofuranosylamine (15, 5%), and 1-N,2-O-carbonyl- α -D-glucofuranosylamine (1, 1%) in the ratios 75:20:5 (NMR data). Fraction I was treated with EtOH to give 7 (107 mg, 13%); R_f 0.45; mp 151–152°C; $[\alpha]_D$ +37° (c 2, H₂O); ν_{max}^{KBr} 1745 cm⁻¹ (C=O). Mass spectrum: m/z 206 (M + 1)⁺. Anal. Calcd for C₇H₁₁NO₆: C, 40.98; H, 5.40; N, 6.83. Found: C, 41.05; H, 5.58; N, 6.75.

The tetra-acetyl derivative (8, 85%) of 7 was a syrup; R_f 0.4 (solvent C); $[\alpha]_D$ +82° (c 1, CHCl₃). Anal. Calcd for $C_{15}H_{19}NO_{10}$: C, 48.26; H, 5.13; N, 3.75. Found: C, 48.12; H, 5.10; N, 3.54.

The above mother liquor was concentrated to give an inseparable mixture (65 mg) of 15, 7, and 1 (in the ratios 56:24:20). Acetylation gave an inseparable syrupy mixture (86%) of the corresponding tetra-acetyl derivatives 16, 8, and 2; R_f 0.4-0.45 (solvent C).

Fraction II was 1-N,3-O-carbonyl- α -D-allopyranosylamine (17; 69 mg, 8%); T 26 min (solvent B); R_f 0.3 (solvent A); mp 180–182°C (from MeOH); $[\alpha]_D$ + 46° (c 2.3, H_2O); $\nu_{\rm max}^{\rm KBr}$ 1690 cm⁻¹ (C=O). Anal. Calcd for $C_7H_{11}NO_6$: C, 40.98; H, 5.40; N, 6.83. Found: C, 41.10; H, 5.50; N, 6.74.

The tetra-acetyl derivative (18, 85%) of 17 was a syrup; R_f 0.7 (solvent C); $[\alpha]_D$ +61° (c 2, CHCl₃). Anal. Calcd for $C_{15}H_{19}NO_{10}$: C, 48.26; H, 5.13; N, 3.75. Found: C, 48.10; H, 5.00; N, 3.58.

Fraction III (254 mg, 35%) was identical with glucose, R_f 0.15 (solvent A). Conventional acetylation gave a mixture of α,β -D-glucopyranose penta-acetate (66%, α,β -ratio 1:2); mp 128–131°C (from EtOH), identified by ¹³C NMR spectroscopy ²⁵.

Reaction of α -D-xylopyranosyl azide (14) with triphenylphosphine and carbon dioxide.—To a solution of 14^{19} (0.875 g, 5 mmol) in dry acetone (29 mL) was added triphenylphosphine (1.64 g, 6.25 mmol) in dry acetone (18 mL), in the presence of CO_2 , and the reaction was carried out as described for 12. TLC (solvent B) then revealed triphenylphosphine (R_f 0.9), triphenylphosphine oxide (R_f 0.7), several products in the region R_f 0.45–0.6, and xylose (R_f 0.2). The solution was concentrated and the residue was extracted with water (15 mL) to leave insoluble phosphorus compounds (1.67 g). The extract was concentrated, and the residue was treated with ether to give an amorphous solid (0.64 g), dry-column flash chromatography²⁴ (solvent B) of which gave, first, a mixture (275 mg, 31%) of four compounds, R_f 0.6, 0.5–0.55, and 0.45 (solvent B), and then xylose (245 mg, 33%).

The first fraction (275 mg) crystallised spontaneously after 2 weeks and, when treated with a little EtOH, yielded 1-N,2-O-carbonyl- α -D-xylopyranosylamine (9; 64 mg, 7%) as colourless prisms; R_f 0.55 (solvent B); mp 153–155°C (from EtOH); $[\alpha]_D$ +34° (c 1.6, H₂O); $\nu_{\rm max}^{\rm KBr}$ 1720 cm⁻¹ (C=O). Mass spectrum: m/z 176 (M + 1)⁺. Anal. Calcd for C₆H₉NO₅: C, 41.15; H, 5.18; N, 8.00. Found: C, 41.01; H, 5.10; N, 7.87.

The ethanolic filtrate of **9** was cooled to give 1-N,3-O-carbonyl- α -D-ribopyrano-sylamine (**19**; 29 mg, 3%); R_f 0.45 (solvent B); mp 194°C; $[\alpha]_D$ + 49° (c 1, EtOH); $\nu_{\text{max}}^{\text{KBr}}$ 1690, 1660 cm⁻¹ (C=O). Mass spectrum: m/z 176 (M + 1)⁺. Anal. Found: C, 41.33; H, 5.23.

The mother liquor was concentrated to give a four-component mixture (178 mg) which, on the basis of 1 H and 13 C NMR spectra, contained 1-N,3-O-carbonyl- β -D-xylopyranosylamine (21) and 1-N,2-O-carbonyl- α -D-xylofuranosylamine (3), 9, and 19, in the ratios 2:1:1:1. Thus, the calculated total yields were 9 11.5%, 19 7.5%, 21 8%, and 3 4%. HPLC (solvent B) of the mixture gave 21 (52 mg, 6%); T 12 min, R_f 0.6 (solvent B); 0.4 (solvent D); mp 168–169°C (from EtOH); $[\alpha]_D$ +8°

(c 2.3, H₂O); $\nu_{\text{max}}^{\text{KBr}}$ 1700 cm⁻¹ (C=O); lit.⁹ mp 155–167°C; $[\alpha]_{\text{D}}$ + 6.4° (H₂O). Anal. Found: C, 41.40; H, 5.30; N, 7.78.

The triacetyl derivative (10, 91%) of 9 was a syrup; R_f 0.45 (solvent C); $[\alpha]_D$ +29° (c 2.3, CHCl₃). Anal. Calcd for $C_{12}H_{15}NO_8$: C, 47.84; H, 5.02; N, 4.65. Found: C, 47.61; H, 4.83; N, 4.46.

The triacetyl derivative (20) of 19, after column chromatography (solvent C), was obtained as a syrup (65%); R_f 0.6 (solvent C); $[\alpha]_D + 15^\circ$ (c 1, CHCl₃). Anal. Found: C, 48.05; H, 5.09; N, 4.61.

The triacetyl derivative^{9,23} (22, 66%) of 21 had R_f 0.35 (solvent E); mp 210–211°C; $[\alpha]_D$ – 17° (c 2, CHCl₃); ν_{max}^{KBr} 1740 (Ac), 1720 cm⁻¹ (carbamate C=O); lit.⁹ mp 182–188°C; $[\alpha]_D$ – 11.5° (CHCl₃).

Reaction of β -D-xylopyranosyl azide with triphenylphosphine and carbon dioxide. —(a) A solution of β -D-xylopyranosyl azide (13; 1.75 g, 10 mmol) in dry acetone (40 mL) was treated with triphenylphosphine (3.0 g, 11.45 mmol) in dry acetone (30 mL), in the presence of CO₂, as described for 12. TLC (solvent D) revealed products with R_f 0.5 (major) and 0.4 together with triphenylphosphine oxide (R_f 0.65). The solution was concentrated, and the residue was extracted with CHCl₃ (30 mL) to leave a mixture (1.46 g, 83%) of 1-N,2-O-carbonyl- β -D-xylopyranosylamine (5) and 1-N,3-O-carbonyl- β -D-xylopyranosylamine (5) and 1-N,3-O-carbonyl- β -D-xylopyranosylamine (21) in the ratio 4:1 (NMR data). Dry-column flash chromatography (EtOAc) of the crude product (0.3 g) gave 5 (39 mg); R_f 0.5 (solvent D); mp 149°C; $[\alpha]_D$ +19° (initial) to +9° (24 h) (c 2, H₂O); $[\alpha]_D$ +23.5° (c 1.5, MeOH); $\nu_{\text{max}}^{\text{KBr}}$ 1745 cm⁻¹ (C=O). Anal. Calcd for C₆H₉NO₅: C, 41.15; H, 5.18; N, 8.00. Found: C, 41.32; H, 5.41; N, 7.79.

The above chloroform extract was concentrated and the residue was extracted with water to leave triphenylphosphine oxide (3.0 g), R_f 0.65 (solvent D), contaminated with triphenylphosphine (R_f 0.85). Concentration of the water extract (0.25 g) and recrystallisation from EtOH gave 21 (120 mg, 7%); R_f 0.4 (solvent D); mp 168-170°C; [α]_D +7.5° (c 2, H_2O), identical with the product obtained from 14.

Conventional acetylation of crude 5 with acetic anhydride and pyridine for 5 days gave 6 (43%); R_f 0.35 (solvent E); mp 190–191°C (from EtOH); $[\alpha]_D$ –24° (c 1.5, CHCl₃); $\nu_{\text{max}}^{\text{KBr}}$ 1780 (carbamate C=O), 1740, 1730 cm⁻¹ (Ac); lit.⁶ mp 190–192°C; $[\alpha]_D$ –25° (c 1, CHCl₃).

(b) Compound 13 (1.0 g, 5.71 mmol) was treated with triphenylphosphine (1.71 g, 6.53 mmol) and CO_2 , as in (a), the mixture was concentrated, and the residue was extracted with water (10 mL) for 5 h and then stored at room temperature overnight to leave the phosphorus compounds. The extract was concentrated to give crude 21 (0.95 g, 95%), R_f 0.4 (solvent D). Recrystallisation from EtOH yielded 21 (0.48 g, 48%); mp 168–169°C, identical with the product described above.

Isomerisation of 5 into 21.—A solution of crude 5 (0.7 g, 4 mmol) in water (14 mL) was stored at room temperature for 2 days. TLC then showed, in accord with the 13 C NMR data, the total conversion of 5 (R_f 0.5, solvent D) into 21 (R_f 0.4).

Concentration of the solution and recrystallisation of the residue from EtOH gave 21 (0.38 g, 54%); mp 167-169°C, identical with the product described above.

ACKNOWLEDGMENTS

This work was supported by the National Fund for Scientific Research (OTKA 775 and 1639) and by a visiting grant of Deutscher Akademischer Austauschdienst (to J.K.). We thank Mrs. M. Pintér for technical assistance, Mrs. M. Rundshagen and Mr. D. Neemeyer for performing some of the NMR spectra, and Mr. K.-H. Plate for recording the MS data.

REFERENCES

- 1 H.D. Tresner, J.H. Korshalla, A.A. Fantini, J.D. Korshalla, J.P. Kirby, J.J. Goodman, R.A. Kele, A.J. Shay, and D.B. Borders, J. Antibiot., 31 (1978) 394-397.
- 2 G.A. Ellestad, D.B. Cosulich, R.W. Broschard, J.H. Martin, M.P. Kunstmann, G.O. Morton, J.E. Lancaster, W. Fulmor, and F.M. Lovell, J. Am. Chem. Soc., 100 (1978) 2515-2524.
- 3 Y. Takagi, C. Komuro, T. Tsuchiya, and S. Umezawa, Bull. Chem. Soc. Jpn., 54 (1981) 1834-1837, and references therein.
- 4 T. Sugawara and M. Narisada, Carbohydr. Res., 194 (1989) 125-138.
- 5 J. Tadanier, J.R. Martin, R. Hallas, R. Rasmussen, D. Grampovnik, W. Rosenbrook, Jr., W. Arnold, and E. Schuber, Carbohydr. Res., 98 (1981) 11-23.
- 6 F.H. Cano, C. Foces-Foces, J. Jiménez-Barbero, A. Alemany, M. Bernabé, and M. Martin-Lomas, J. Org. Chem., 52 (1987) 3367-3372.
- 7 G. Zemplén, Á. Gerecs, and M. Rados, Ber., 69 (1936) 748-754.
- 8 J. Kovács, I. Pintér, U. Lendering, and P. Köll, Carbohydr. Res., 210 (1991) 155-166.
- 9 V.I. Mukhanov, I.L. Kustova, V.N. Gagloev, I.V. Yartseva, V.E. Shevchenko, A. Veveris, B. Spince, and M.N. Preobrazhenskaya, *Bioorg. Khim.*, 10 (1984) 1385-1394.
- 10 J. Kovács, I. Pintér, A. Messmer, and G. Tóth, Carbohydr. Res., 141 (1985) 57-65.
- 11 P.R. Steyermark, J. Org. Chem., 27 (1962) 1058-1059.
- 12 R.F. Helm and J.J. Karchesy, J. Carbohydr. Chem., 8 (1989) 687-692.
- 13 R.F. Helm and J.J. Karchesy, J. Carbohydr. Chem., 10 (1991) 113.
- 14 (a) T. Takeda, Y. Sugiura, C. Hamada, R. Fujii, K. Suzuki, Y. Ogihara, and S. Shibata, Chem. Pharm. Bull., 29 (1981) 3196-3201; (b) Z. Györgydeák and L. Szilágyi, Liebigs Ann. Chem., (1987) 235-241.
- 15 A. Bax, J. Magn. Reson., 57 (1984) 314-318.
- 16 P. Boullanger, M. Jouineau, B. Bouammali, D. Lafont, and G. Descotes, *Carbohydr. Res.*, 202 (1990) 151-164.
- 17 C. Foces-Foces, F.H. Cano, M. Bernabé, S. Penades, and M. Martin-Lomas, *Carbohydr. Res.*, 135 (1984) 1-11.
- 18 J. Yoshimura, T. Sekiya, and Y. Ogura, Bull. Chem. Soc. Jpn., 47 (1974) 1219-1223.
- 19 Z. Györgydeák and L. Szilágyi, Liebigs. Ann. Chem., (1986) 1393-1397.
- 20 L. Benzing-Purdie and J.H. Nikiforuk, J. Carbohydr. Chem., 2 (1983) 439-447.
- 21 H. Paulsen, Z. Györgydeák, and M. Friedmann, Chem. Ber., 107 (1974) 1590-1613.
- 22 P. Köll, J. Kovács, D. Abeln, and J. Kopf, Carbohydr. Res., 239 (1993) 245-248.
- 23 B.K. Sadybakasov, M.A. Ashirmatov, V.A. Afanas'ev, and Yu.T. Struchkov, Zh. Strukt. Khim., 30(4) (1989) 135-140.
- 24 L.M. Harwood, Aldrichimica Acta, 18 (1985) 25.
- 25 K. Bock and C. Pedersen, Adv. Carbohyr. Chem. Biochem., 41 (1983) 27-66.